

A INNOVATIVE AND POWERFUL MOBILE ANTI-RAMMING SYSTEM

S. Baragetti^{a,b}, E. Salvador^{c,d}, E. V. Arcieri^{a,b}

^aGITT- Centre on Innovation Management and Technology Transfer, University of Bergamo, Via Salvecchio 19, Bergamo (BG) 24129, Italy ^bDepartment of Management, Information and Production Engineering, University of Bergamo, Viale Marconi 5, Dalmine (BG) 24044, Italy ^cBesenzoni S.p.A., Via Molere 2, Sarnico (BG) 24067, Italy

dBesenzoni Defence & Protection S.r.I., Via Molere 2, Sarnico (BG) 24067, Italy

The present work is the result of the collaboration between University of Bergamo and Besenzoni S.p.A. A new startup (Besenzoni Defence & Protection S.r.l.) was founded.

THE PROBLEM: ramming attack, a "new" shape of terror attack

07/2016: Nice, Promenade (>80 killed people, ~300 injured) 12/2016: Berlin, Breitscheidplatz (11 killed people, >50 injured)

03/2017: London, Westminster (5 killed people, 50 injured)

04/2017: Stockholm (4 killed people)

06/2017: London, London Bridge (7 killed people)

08/2017: Barcelona, Las Ramblas (~15 killed people, 130 injured) 10/2017: New York, Manhattan (8 killed people, ~12 injured)

THE EXISTING SOLUTIONS

ARE THE EXISTING SOLUTIONS EFFECTIVE? CAN WE IMPROVE THE PERFORMANCE WITH A INNOVATIVE, GOOD-LOOKING & MOBILE SOLUTION?

MATHEMATICAL MODEL

$$E_{total}(t_{initial}) = E_{total}(t_{final})$$

$$\frac{1}{2}mv^2 = \frac{1}{2}K\frac{1}{K^2}\frac{m^2v^2}{\Delta t^2} + \mu M_{eq}g\Delta x \longrightarrow \Delta x = \frac{1}{2\mu M_{eq}g}mv^2\left(1 - \frac{1}{K}\frac{m}{\Delta t^2}\right) \longrightarrow K$$

m = mass of the impacting vehicle; v = speed of the impacting vehicle; M = speed of the obstacle; M_{eq} = mass of the system after the impact (M for elastic impact, m+M for inelastic impact); g = gravity acceleration; Δx = displacement of the obstacle.

100 NUMERICAL MODELS

The obstacle is a **flowerpot** filled with water.

The following aspects were investigated:

- Different shapes (number of sheets, thickness of the sheets, distribution of the weight, production process)
- Different materials (for the flowerpot and the filler: steel, aluminum, concrete, lead)
- Different impact angles
- > Explicit calculation
- > SPH (Smooth Particle Hydrodynamics) methodology for water simulation

FINAL CONCEPT

M = 3600 kg (1550 kg water)**EASY TRANSPORTATION**

- Safety rubber border
- Collapsible chassis
- Shock absorption tank
- Tyres puncturing device High friction heavy base
- Linking wires

EXPERIMENTAL CRASH TEST

RESULTS AND CERTIFICATIONS

m = 3500 kgv = 64 km/h

Obstacle		Displacement (m)
New jersey / cube	FEM	>30
Flowerpot	FEM & crash test	~4

✓ PAS 68:2013 & IWA 14-1:2013 standard certifications

Thanks to Ivan Adobati, Mattia Bonalumi, Pietro Servalli and Matteo Simone.

ACKNOWLEDGMENTS

[1] PAS 68:2013 standard

[2] IWA 14-1:2013 standard

AN EXAMPLE OF APPLICATION

